ANNEXURE F ## Indian Institute of Information Technology, Design and Manufacturing Kancheepuram Introduction of New course | Course Title | Physics of Materials | Course No | PH2002 | | | | | |---|--|---------------|-------------------------|---|----------|--|---| | Department/ Specialization | Physics | Credits | L | Т | T P | | С | | | | | 3 | 1 | 0 | | 4 | | Faculty proposing the course | Dr. Y Ashok Kumar Reddy | Status | Core | | Elective | | | | Offered for | UG | Туре | New | | Revision | | | | To take effect from | March 2021 | Submitted for | 44 th Senate | | | | | | Prerequisite | Nil | approval | | | | | | | Learning Objectives | • The objective of the course is to provide the insights of various states of material and their properties, nanotechnology, existing energy resources and their applications for next generation Engineers. | | | | | | | | Learning Outcomes | Upon successful completion, students can gain the knowledge to: Applied Physics concepts towards materials and their applications; Evaluation and selection of suitable materials for different energy, medical and industrial applications. | | | | | | | | Course Contents (with approximate breakup of hours for lecture/tutorial/practice) | Physics of Matter: Atoms in crystals, Atomic bonding, Free electron theory, Band theory, Fermi Level, Energy bands, Conductors, Insulators, Semiconductors, Superconductors, Dielectrics, Magnetic and Plasmonic materials (L12+T3) Physics of Nano: Introduction to nanomaterials, Properties of nanomaterials, Types of nanomaterials, Synthesis of Nanomaterials-Top-down and Bottom-up approaches, Quantum confinement, Quantum well, Wire and Dot, Carbon Nanotubes (CNTs), Nanotechnology for medical and industrial applications (L14+T4) Physics of Energy: Introduction to energy sources, Solar energy- Solar production and Radiation, Photovoltaic solar cells; Nuclear energy- Nuclear energy processes, Fission and Fusion; Electrochemical energy- Storage and Conversion; Thermal Energy- Conduction, Convection and Radiation; Wind Energy- Turbines and Utility scale wind; Bio energy- Sources and Biomass (L16+T5) | | | | | | | | Essential Reading | Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, 7th Edition, 2017. Charles P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology, A John Wiley-Interscience publication, 2003. M.N. Avadhanulu, P.G. Kshirsagar, T.V.S. Arun Murthy, A Textbook of Engineering Physics, S. Chand Publishing, 11th Edition, 2018. | | | | | | | | Supplementary
Reading | Charles Kittel, Introduction to Solid State Physics, 8th Edition, 2004. A.P. Zambare, R.B. Bhise, A.B. Bhise, V.D. Kulkarni, H.R. Kulkarni, Physics of Nanomaterials, Nirali Prakashan, 2019. Robert L. Jaffe, Washington Taylor, The Physics of Energy, Cambridge University Press, 2018. | | | | | | |